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turns out to be
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which eventually yields the following expressions for the BLUE of β
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 Ṽ X̃

X̃ ′ 0



−1

=
[
0 0 I

]



V 0 0

0 0 R′

X ′ R 0




−1 


y

s

0


 (18)

and for its dispersion matrix
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Straightforward application of standard partitioned inversion rules leads
to the more convenient formulae
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A second way to tackle the issue of finding the BLUE of β brings us
back to unified least squares theory (Rao [9]). In this connection, observe
that after (14) and (16), the matrix C̃ provides the minimum Ṽ -(semi)norm
generalized inverse of X̃ (Rao and Mitra [15]). Then take

W = Ṽ + X̃UX̃ ′ (22)


